A Multilingual Dependency Analysis System Using Online Passive-Aggressive Learning

نویسندگان

  • Minh Le Nguyen
  • Akira Shimazu
  • Thai Phuong Nguyen
  • Xuan Hieu Phan
چکیده

This paper presents an online algorithm for dependency parsing problems. We propose an adaptation of the passive and aggressive online learning algorithm to the dependency parsing domain. We evaluate the proposed algorithms on the 2007 CONLL Shared Task, and report errors analysis. Experimental results show that the system score is better than the average score among the participating systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Bayesian Passive-Aggressive Learning

Online Passive-Aggressive (PA) learning is an effective framework for performing max-margin online learning. But the deterministic formulation and estimated single large-margin model could limit its capability in discovering descriptive structures underlying complex data. This paper presents online Bayesian Passive-Aggressive (BayesPA) learning, which subsumes the online PA and extends naturall...

متن کامل

Confusion-Based Online Learning and a Passive-Aggressive Scheme

This paper provides the first —to the best of our knowledge— analysis of online learning algorithms for multiclass problems when the confusion matrix is taken as a performance measure. The work builds upon recent and elegant results on noncommutative concentration inequalities, i.e. concentration inequalities that apply to matrices, and, more precisely, to matrix martingales. We do establish ge...

متن کامل

Online Passive Aggressive Active Learning and Its Applications

We investigate online active learning techniques for classification tasks in data stream mining applications. Unlike traditional learning approaches (either batch or online learning) that often require to request the class label of each incoming instance, online active learning queries only a subset of informative incoming instances to update the classification model, which aims to maximize cla...

متن کامل

Online multiclass learning with ”bandit” feedback under a Passive-Aggressive approach

Abstract. This paper presents a new approach to online multi-class learning with bandit feedback. This algorithm, named PAB (Passive Aggressive in Bandit) is a variant of Online Passive-Aggressive Algorithm proposed by [2], the latter being an e↵ective framework for performing max-margin online learning. We analyze some of its operating principles, and show it to provide a good and scalable sol...

متن کامل

Online Learning for Deterministic Dependency Parsing

Deterministic parsing has emerged as an effective alternative for complex parsing algorithms which search the entire search space to get the best probable parse tree. In this paper, we present an online large margin based training framework for deterministic parsing using Nivre’s Shift-Reduce parsing algorithm. Online training facilitates the use of high dimensional features without creating me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007